New computer program can help crack precision medicine

Researchers from The Australian National University (ANU) have helped develop a new computer program to find out a person’s genetic make-up, bringing us a step closer to an era of precision medicine.

The program, called Flye, provides a step-by-step procedure for computers to assemble genomes – a person’s complete set of genes – and enables the process to be much faster and more accurate than current best-practice methods.

ANU researcher Dr Yu Lin said the breakthrough would lead to better prevention, prediction and diagnosis of illnesses, as well as improved treatment, disease management and cures.

“We hope our innovation will help people to live longer and better – particularly people suffering from diseases that are not currently treatable,” said Dr Lin from the Research School of Computer Science.

“Precision medical care is advanced by personal genomics, which focuses on the unique genetic profile of individuals.”

Dr Lin said that by using long DNA sequences the new computer program would improve the reliability of genome assemblies, as well as lead to a range of biomedical applications.

“Using long DNA sequences rather than short ones taken randomly from a genome – a popular method used today – opens the door to huge advances in accuracy, speed and usefulness for a range of medical purposes and other applications,” he said.

“This will open up a range of biomedical applications such as enhanced screening for genetic disorders and personalised treatments for diseases that are incurable today.”

A long sequence ranges between 5,000 and 20,000 DNA letters, while short sequences are typically 200 letters. The length of genes in a human genome vary from hundreds to hundreds of thousands of letters.

Dr Lin said the cost of computing would likely start to dominate many sequencing projects, as the price of genome sequencing continues to drop.

“We need more efficient models and algorithms, like the one we’ve created, to keep computing costs as low as possible,” he said.

Dr Lin collaborated with colleagues at the University of California in the United States.

The research is published in Nature Biotechnology.

Journalists who would like to link to the paper can use the following: https://www.nature.com/articles/s41587-019-0072-8

FOR INTERVIEW:

Dr Yu Lin

Research School of Computer Science
ANU College of Engineering and Computer Science
T: +61 2 6125 4509
E: yu.lin@anu.edu.au

For media assistance, contact Will Wright on +61 2 6100 3486, the ANU media hotline on +612 6125 7979 or email the ANU Media Team at media@anu.edu.au

About The Australian National University

ANU is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

The Australian National University
East Road, Acton
2601 Canberra