Star nearing death offers a preview of our Sun’s fate

Star nearing death offers a preview of our Sun’s fate

EMBARGOED UNTIL 12.05AM FRIDAY 26 JULY 2019 (AEST)

An international team of astronomers has witnessed a rare dynamic event foreshadowing the death of a red giant star for the first time – a discovery that reinforces predictions about our Sun’s ultimate demise.

Dr Meridith Joyce, an astronomer based at The Australian National University (ANU) co-led the study with Dr László Molnár and Dr László Kiss from the Konkoly Observatory of the Hungarian Academy of Sciences. Dr Joyce said the star studied, T Ursae Minoris (T UMi), was similar to the Sun.

“This has been one of the rare opportunities when the signs of ageing could be directly observed in a star over human timescales,” said Dr Joyce.

“We anticipate our Sun and T UMi will end their lives much more quietly and slowly compared with a supernova – a powerful and luminous explosion.”

The findings support the prediction that our Sun will turn into a red giant and then into an expanding and glowing ring-shaped shell of gas in five billion years, leaving behind a small white dwarf as a remnant, Dr Joyce said.

“It will become much bigger as it approaches death – eating Venus, Mercury and possibly the Earth in the process – before shrinking to become a white dwarf,” she said.

T UMi was born about 1.2 billion years ago, with a mass roughly twice that of our Sun, in the Little Bear constellation more than 3000 light years from Earth.

The team found that over the past few million years, during its last stage of life before its ultimate transition to a white dwarf, T UMi has been undergoing a series of pulses, whereby its size, brightness and temperature have fluctuated enormously.

“Energy production in T UMi has become unstable. During this phase, nuclear fusion flares up deep inside, causing 'hiccups’ that we call thermal pulses.

“These pulses cause drastic, rapid changes in the size and brightness of the star, which are detectable over centuries. The pulses of old stars like T UMi also enrich the entire Universe with elements including carbon, nitrogen, tin and lead.”

The team has observed the star diminishing in size, brightness and temperature over the past 30 years.

“We believe the star is entering one of its last remaining pulses, and we’d expect to see it expanding again in our lifetimes. The star will eventually become a white dwarf within a few hundred thousand years,” Dr Joyce said.

“Both amateur and professional astronomers will continue to observe the evolution of the star in the coming decades, which will provide a direct test of our predictions within the next 30 to 50 years.”

The study is published in The Astrophysical Journal.

High-resolution image of Dr Meridith Joyce: 
https://anumedia.canto.global/b/UEHMC
Please credit: Lannon Harley, ANU

Feel free to contact Will Wright from ANU Media (contact details below) for a copy of the scientific paper or to discuss options for images and/or video to go with the story.

FOR INTERVIEWS:

Dr Meridith Joyce
Research School of Astronomy and Astrophysics
ANU College of Science
M: +61 476 680 932
E: meridith.joyce@anu.edu.au

For media assistance, contact Will Wright on +61 2 6100 3486, the ANU media hotline on +612 6125 7979 or at media@anu.edu.au

About The Australian National University

ANU is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

The Australian National University
East Road, Acton
2601 Canberra